
Enriched Multiscreen TV Experience toolkit
Daniel Ockeloen

Noterik BV
Prins Hendrikkade 120

Amsterdam, The Netherlands
+31 (0)20 592 99 66
daniel@noterik.nl

Kati Hyyppä
Noterik BV

Prins Hendrikkade 120
Amsterdam, The Netherlands

+31 (0)20 592 99 66
kati@noterik.nl

Pieter van Leeuwen
Noterik BV

Prins Hendrikkade 120
Amsterdam, The Netherlands

+31 (0)20 592 99 66
p.vanleeuwen@noterik.nl

ABSTRACT
We present a multiscreen toolkit that is being developed in the
LinkedTV project. The project researches and develops
solutions for seamless integration of television and Web
content, providing an enriched audiovisual experience. The
multiscreen toolkit enables using devices like tablets as a 2nd
screen in combination with television. The toolkit not only
extends the interactive capabilities of television, but also
enables versatile prototyping of multiscreen applications using
HTML5 technologies. Our demonstration consists of a 2nd
screen application implemented with the multiscreen toolkit
which supports (1) viewing of time-based and spatial
enrichments related to a TV program on mobile devices and (2)
social interaction between viewers while watching a program.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Prototyping, Interaction styles,
Graphical user interfaces; H.5.1 [Multimedia Information
Systems]: Video; C.2.4 [Distributed Systems]: Distributed
applications.

General Terms
Design, Human Factors, Experimentation

Keywords
Interactive television, multiscreen, second screen, social video,
toolkit

1. INTRODUCTION
Smart TV sets and mobile devices such as tablets have become
part of our everyday media consumption, and multitasking with
different devices is common.1 Web technologies such as
HTML5 are also used increasingly in providing new ways to
engage with television content.2 The LinkedTV project
researches and develops new ways to integrate television and
Web content seamlessly, providing enriched and interactive
television experiences (http://www.linkedtv.eu). In the
LinkedTV platform, enrichments related to a program are
generated based on automatic video analyses and harvesting of
related Web content. These temporally and spatially labeled
enrichments are integrated together with interactive and social
features in a non-intrusive user interface using a 2nd screen
solution.

Our demonstration shows ongoing technical developments
related to the interface design, which are continuation to prior
LinkedTV work.[1] We present an HTML5 based multiscreen
toolkit developed by Noterik (http://www.noterik.nl), which
enables development of interactive television applications that

1 See for example the following studies:
http://razorfishoutlook.razorfish.com/articles/forgetmobile.aspx,
http://www.google.com/think/research-studies/the-new-multi-
screen-world-study.html
2 See for example: http://www.hbbtv.org, http://dashif.org

operate across devices and screens. As an example, we show a
2nd screen application built with the toolkit, which enables both
viewing of enriched television content as well as social
interactions between viewers. The television content used in our
demonstration is a news program called “rbb AKTUELL” by
one the LinkedTV consortium members, Rundfunk Berlin-
Brandenburg (http://www.rbb-online.de).

The core themes related to our technical demonstration, which
is targeted to both designers and developers, include the
following:

How to support presentation of enriched television content in
non-intrusive ways using multiple screens, such as television
and a touch screen tablet

How to support interaction between viewers with multiple
screens

How to build a multiscreen toolkit, which enables flexible
design and testing of multiscreen applications

2. DEMO SCENARIO
The idea of the LinkedTV platform is to automatically enrich
television programs with various types of related information
and media content from the Web. The program related
information that is provided to the viewer should be relevant to
the viewer’s interests as well as to the type of program (e.g.
news). The enrichments and interactive features should be also
presented such that they do not intrude while watching the
program. With these aspects in mind, we can depict a general
scenario for our demonstration:

Laura starts to watch a television program and opens a 2nd
screen application on her tablet. The application shows her
personalized dashboard where she can join the program and
obtain related information. As the program runs on the
television, the enrichments related to it are displayed on the 2nd
screen. Laura can explore them, or just watch the program, as
the enrichments are also available for later viewing. She can
also bookmark items related to the program, or share them with
friends.

Figure 1 below elaborates the scenario further and gives an
overview of some of the interactive features that are available in
the 2nd screen application built with the multiscreen toolkit. A
video runs on the main screen (top), while additional
information is shown on a tablet (bottom left). The enrichments
are show in layers (e.g. “People”), and items related to current
video moment are highlighted. It is possible to view the related
information in detail, bookmark it, share it, or to push it to the
main screen using drag and drop (bottom right). The user can
also adjust with settings what kind of information is shown, and
on which screen it is shown (e.g. information layers can be
turned on/off, and it can be adjusted how and where program
related information or social items are displayed).

Figure 1: Overview of the 2nd screen application built with
the multiscreen toolkit.

3. INTENDED DEMO AUDIENCE
The demonstration is intended for concept/interaction designers
and technical developers.

Concept/interaction designers: We are interested in showing
the multiscreen toolkit to designers in the area of interactive
television and social video applications. We would like to
discuss possible further extensions to our toolkit, which enable
flexible prototyping of concept and interface ideas.

Technical developers: We want to show the multiscreen toolkit
to developers working on advanced HTML5 and multiscreen
applications. We would like to discuss technical aspects of
multiscreen application development as well as open sourcing
of the multiscreen toolkit.

4. TECHNICAL DETAILS
The demonstration will show the 2nd screen application
described above, which is one example of a multiscreen
application that is being developed using the multiscreen
toolkit. The aim of the toolkit is to allow rapid prototyping for
multiscreen applications, where the developer can focus on
implementation of his idea without having to deal with issues
regarding, for example, synchronization or communication
between the multiple screens.

The front-end of the demo is built for web browsers using
HTML5, JavaScript and CSS technology in order to allow
support for a broad variety of devices. Special attention is given
to mobile devices (iOS, Android) to support touch-based
gestures for the interactive interface. Setting up the connection

between the different devices is made available using the DIAL
protocol.3

The front-end is build on top of an existing cluster-based
platform called Springfield4, which links together a variety of
RESTful web services where audiovisual content is stored
automatically, processed and made accessible for streaming.
The audiovisual content is segmented into both temporal and
spatial fragments[2] and linked to annotations, all generated by
the LinkedTV platform, which enables versatile enrichment on
different dimensions of a video.

For the multiscreen toolkit, additional extensions are written for
Springfield in Java. They will not only handle the sharing,
communication and joining of applications, but also provide a
way to push adaptive designs to client in order to abstract the
client side code.

 MULTISCREEN TOOLKIT
We will describe briefly five core elements of the multiscreen
toolkit and how these elements support developers in the
creation of applications using it.
4.1Unified application model
The aim of the multiscreen toolkit is to allow the easy
implementation of multiscreen applications by developers.
Therefore it’s important to find a correct balance between using
widely known programming languages and commonly used
tools most developers will be familiar with and to remove the
difficulties in implementation that may arise with the different
type of applications that will be developed.

In the case of multiscreen applications challenges like for
example multiple users and multiple screens per application,
synchronization of video and metadata and multiple device
types needs to be handled. The toolkit focuses on these aspects
and one of the major features is that applications, identified by a
unique uri, once created, run on the server even when no clients
are attached. This means every user joins the application instead
of starting a new copy of the application. All users will watch
the same application while user and screen objects get added to
the application. This allows developers to simply create a
community of people that only need to join the application
without having to deal with the communication and
synchronization in between.

The connection between the application and multiple users and
screens is maintained by using a comet/long polling connections
so all screens and users are updated live. This allows for
features like object and screen sharing in interesting ways (see
figure 2 for an example application).

4.2 Hardware abstraction
When developing multiscreen applications for HbbTV, mobile
devices, remote-control or gesture interfaces the pitfall is that
the software can get overly complex due to the support for
different versions needed for the range of platforms, input
methods and displays. The aim is to provide hardware
abstraction as part of the toolkit for several well-known
hardware components so different devices can be used without
any need for code changes. A good example is the remote
control.

3 http://www.dial-multiscreen.org/dial-protocol-
specification/DIAL-2ndScreenProtocol-
1.6.4.pdf?attredirects=0&d=1
4 The platform is developed by Noterik and will be available in
open source in the future.

Figure 2: Sample application that shows an image shared
over multiple screens.

The toolkit provides a library that can handle signals from old
fashioned remotes (e.g. HbbTV, see figure 3), a simulated
HTML5 remote and gesture types of remotes (e.g. Leap
Motion5). The library provides basic functionality like play,
pause and next but also supports more complex actions that can
be implemented in each of the applications. This allows for a
flexible demo setups where it’s possible to use real hardware
when available but not demanding it. This combined with the
sole software demand of HTML5 means that prototypes made
can easily be shared with possible clients or other members of
the development team who don’t always have the target
hardware available at their location.

4.3 Message and notification system
Each component inside an application can be uniquely
identified by a REST based uri. The root uri is defined by the
application that gets an id based on the domain and user who
initiated the application. Other users can join the application
simply by opening the same uri in a HTML5 compatible
browser. As new components (e.g. users or screens) join the
application they are assigned their own identifier within the
application name space. The idea behind addressing all the
components, including GUI elements, is that this allows
communication where messages and notifications can be
addressed based on the identifiers.

Figure 3: Example traffic light application with remote
control support.

5 https://www.leapmotion.com

The toolkit provides a RESTful based message API to send
messages to any object or a group of objects in the namespace
of the application. The use of the message API allows that any
component can send messages and receive notifications from
any other component within the namespace. Mostly this will be
used to send messages to components within the same
application but it can also be used to communicate to other
applications or even external systems. Messages to a component
that is shown on multiple screens will all receive the message
unless you specifically address a screen by its id we also allow
for wildcards in different forms so its easy to talk to multiple
targets in flexible ways.

4.4 Client-server code injection
Another goal of the multiscreen toolkit is to help developers to
focus on code that adds server side functionality. The server
side uses Java in a J2EE/Restlet concept this is easily done by
creating a structure where all the heavy lifting is done by the
toolkit. The toolkit follows the path of servlets, restlets and
applets by extending a base class called HTML5Application.
The result is that a simple 'HelloWorld' example can be reduced
to around 10 to 20 lines even if it has full multiscreen and multi
user support.

On the client side JavaScript doesn’t have the full-range of
options of Java so code injection between the server and client
is used. For example to be able to do touch type events (tap,
drag, swipe, pinch) normally extra event code is needed even
with support packages like hammer6 that is also used in the
toolkit. You also need to defeat all the normal browser type
events to give your application the correct ‘app’ feeling people
want when using a smart phone or tablet. By using injection for
the hammer code the client application code is reduced by up to
30%. The same is done for all other mandatory code (e.g. using
jQuery7) needed in modern HTML5 style interfaces depending
on device, application needs and debugging mode.

4.5 Support services
Since the multiscreen toolkit runs applications on the server it
can easily be extended with extra services. Three example areas
that are particular interested are 1) support for external user and
community services, profile maintenance and joining/leaving
groups and sharing. 2) Make the integration with external data
sources easier. Many of the prototypes build with the
multiscreen toolkit will revolve around LoD/metadata databases
and having direct access using the communication layer
outlined in section 6.3 provides less and cleaner code. 3)
Normally multi screen applications can be difficult to test and
debug due to their distributed nature, the multi screen toolkit
offers mechanisms to make this more convenient for the
developer. Using code injection the toolkit inserts try/catch
error and tracking handlers that allow the possibility to view
what is displayed on each of the connected screens and to
change properties of the application on the fly that directly
affect all connected screens. All errors are forwarded to the
server and stored in a central place for easy discovery of errors
on certain screens. This extends to normal admin tools (see
figure 4) where the maintainer of the Springfield cluster can see
what applications are running which users and screens are
attached and can interact with them as part of the debugging
process.

6 http://eightmedia.github.io/hammer.js/
7 http://jquery.com

Figure 4: The multiscreen toolkit admin console.

5. FUTURE WORK
The 2nd screen application demo will be released in June 2013,
and is intended at this phase mainly for the LinkedTV
consortium partners, who can use it in multiscreen application
design within the project. The application and the multiscreen
toolkit serve as a basis for the LinkedTV application and
interface development during the last project year. We also
hope to develop the toolkit further so that it can be easily
deployed for quick prototyping of multiscreen concept and
application ideas more widely.

Further research will be done in the areas of how we can use
parts of the toolkit in the upcoming HbbTV 2.0 framework for
both single and multiscreen solutions, and how the DIAL
protocol8 can be used when viewers are watching together in
multiple locations to share/send apps. User trials will also be
conducted in the LinkedTV project, which provide further
feedback on the multiscreen interface design.

6. ACKNOWLEDGMENTS
LinkedTV is funded by the European Commission through the
7th Framework Programme (FP7-287911).

7. REFERENCES
[1] Baltussen, L., Leyssen, M., Ossenbruggen, J., Oomen, J.,

Blom, J., Leeuwen, P. van and Hardman, L.. 2012.
Antiques Interactive. In Proceedings of EuroITV 2012
demo session. Available at:
http://www.euroitv2012.org/AdjProc_EuroITV2012.pdf
p23-p24

[2] Troncy, R., Mannens, E., Pfeiffer, S., and Deursen, D. van.
2012. Media Fragments URI 1.0 (basic). W3C
Recommendation. Available at:
http://www.w3.org/TR/media-frags/.

8 http://www.dial-multiscreen.org

